Figure 3 Estimating Midpoint Speed

In mathematical terms, the following exponential function gives the relationship between midpoint speed and spacing of slow points:

```
85^{th}_{midpoint \, (mph)} = 85^{th}_{slow \, point \, (mph)} + (85^{th}_{street \, (mph)} - 85^{th}_{slow \, point \, (mph)}) * 0.56 * (1 - e^{-0.004 * spacing \, (ft.)}) where; 85^{th}_{midpoint} = resulting \, 85^{th}_{percentile \, speed \, at \, midpoint \, after \, treatment; 85^{th}_{slow \, point} = estimated \, 85^{th}_{percentile \, speed \, at \, the \, slow \, point \, after \, treatment; 85^{th}_{street} = 85^{th}_{percentile \, speed \, of \, street \, before \, treatment; spacing = distance in feet between two devices.
```

When placing speed-control measures, use the above formula to test proposed spacings to determine whether the estimated midpoint speeds would meet the targeted midpoint speed.

Example (speed humps on street with starting speed of 32 mph):

Where spacing is 350 feet:

```
85^{th}_{midpoint \, (mph)} = 15 \, mph + ((32 \, mph - 15 \, mph) * 0.56 * (1 - e^{-0.004} * 350 \, feet)) 85^{th}_{midpoint \, (mph)} = \underline{22 \, mph} Where spacing is 750 feet: 85^{th}_{midpoint \, (mph)} = 15 \, mph + ((32 \, mph - 15 \, mph) * 0.56 * (1 - e^{-0.004} * 750 \, feet)) 85^{th}_{midpoint \, (mph)} = \underline{24 \, mph}
```

The spacing of neighborhood traffic management measures directly affects the midpoint speeds: the farther apart they are, the higher the midpoint speed. In general, speed control measures placed 350 to 750 feet from another slow-point can result in speed reductions similar to those indicated in Table 4. Measures placed at intervals of less that 350 feet can become a nuisance to drivers, and measures placed greater than 750 feet apart decrease the ability to slow speeds to the target midpoint speed. In addition, vertical measures should be place a minimum of 250 feet from an adjacent intersection.